Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731924

ABSTRACT

Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study.


Subject(s)
Feasibility Studies , Fluorescence Resonance Energy Transfer , Microscopy, Fluorescence , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , Humans , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Spectrometry, Fluorescence/methods , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Fluorescence
2.
J Microsc ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747464

ABSTRACT

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

3.
Biomed Opt Express ; 15(3): 1408-1417, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38495713

ABSTRACT

Assessing cell viability is important in many fields of research. Current optical methods to assess cell viability typically involve fluorescent dyes, which are often less reliable and have poor permeability in primary tissues. Dynamic optical coherence microscopy (dOCM) is an emerging tool that provides label-free contrast reflecting changes in cellular metabolism. In this work, we compare the live contrast obtained from dOCM to viability dyes, and for the first time to our knowledge, demonstrate that dOCM can distinguish live cells from dead cells in murine syngeneic tumors. We further demonstrate a strong correlation between dOCM live contrast and optical redox ratio by metabolic imaging in primary mouse liver tissue. The dOCM technique opens a new avenue to apply label-free imaging to assess the effects of immuno-oncology agents, targeted therapies, chemotherapy, and cell therapies using live tumor tissues.

4.
ArXiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38351940

ABSTRACT

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured image data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable image data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse image data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made considerable progress toward generating community standard practices for imaging Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges, and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

5.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37710020

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Subject(s)
Checklist , Publishing , Reproducibility of Results , Image Processing, Computer-Assisted , Microscopy
6.
Front Bioinform ; 3: 1286983, 2023.
Article in English | MEDLINE | ID: mdl-38098814

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) provides valuable quantitative insights into fluorophores' chemical microenvironment. Due to long computation times and the lack of accessible, open-source real-time analysis toolkits, traditional analysis of FLIM data, particularly with the widely used time-correlated single-photon counting (TCSPC) approach, typically occurs after acquisition. As a result, uncertainties about the quality of FLIM data persist even after collection, frequently necessitating the extension of imaging sessions. Unfortunately, prolonged sessions not only risk missing important biological events but also cause photobleaching and photodamage. We present the first open-source program designed for real-time FLIM analysis during specimen scanning to address these challenges. Our approach combines acquisition with real-time computational and visualization capabilities, allowing us to assess FLIM data quality on the fly. Our open-source real-time FLIM viewer, integrated as a Napari plugin, displays phasor analysis and rapid lifetime determination (RLD) results computed from real-time data transmitted by acquisition software such as the open-source Micro-Manager-based OpenScan package. Our method facilitates early identification of FLIM signatures and data quality assessment by providing preliminary analysis during acquisition. This not only speeds up the imaging process, but it is especially useful when imaging sensitive live biological samples.

7.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808866

ABSTRACT

The brain is a high energy tissue, and the cell types of which it is comprised are distinct in function and in metabolic requirements. The transcriptional co-activator PGC-1a is a master regulator of mitochondrial function and is highly expressed in the brain; however, its cell-type specific role in regulating metabolism has not been well established. Here, we show that PGC-1a is responsive to aging and that expression of the neuron specific PGC-1a isoform allows for specialization in metabolic adaptation. Transcriptional profiles of the cortex from male mice show an impact of age on immune, inflammatory, and neuronal functional pathways and a highly integrated metabolic response that is associated with decreased expression of PGC-1a. Proteomic analysis confirms age-related changes in metabolism and further shows changes in ribosomal and RNA splicing pathways. We show that neurons express a specialized PGC-1a isoform that becomes active during differentiation from stem cells and is further induced during the maturation of isolated neurons. Neuronal but not astrocyte PGC-1a responds robustly to inhibition of the growth sensitive kinase GSK3b, where the brain specific promoter driven dominant isoform is repressed. The GSK3b inhibitor lithium broadly reprograms metabolism and growth signaling, including significantly lower expression of mitochondrial and ribosomal pathway genes and suppression of growth signaling, which are linked to changes in mitochondrial function and neuronal outgrowth. In vivo, lithium treatment significantly changes the expression of genes involved in cortical growth, endocrine, and circadian pathways. These data place the GSK3b/PGC-1a axis centrally in a growth and metabolism network that is directly relevant to brain aging.

8.
Med Image Anal ; 90: 102961, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37802011

ABSTRACT

The role of fibrillar collagen in the tissue microenvironment is critical in disease contexts ranging from cancers to chronic inflammations, as evidenced by many studies. Quantifying fibrillar collagen organization has become a powerful approach for characterizing the topology of collagen fibers and studying the role of collagen fibers in disease progression. We present a deep learning-based pipeline to quantify collagen fibers' topological properties in microscopy-based collagen images from pathological tissue samples. Our method leverages deep neural networks to extract collagen fiber centerlines and deep generative models to create synthetic training data, addressing the current shortage of large-scale annotations. As a part of this effort, we have created and annotated a collagen fiber centerline dataset, with the hope of facilitating further research in this field. Quantitative measurements such as fiber orientation, alignment, density, and length can be derived based on the centerline extraction results. Our pipeline comprises three stages. Initially, a variational autoencoder is trained to generate synthetic centerlines possessing controllable topological properties. Subsequently, a conditional generative adversarial network synthesizes realistic collagen fiber images from the synthetic centerlines, yielding a synthetic training set of image-centerline pairs. Finally, we train a collagen fiber centerline extraction network using both the original and synthetic data. Evaluation using collagen fiber images from pancreas, liver, and breast cancer samples collected via second-harmonic generation microscopy demonstrates our pipeline's superiority over several popular fiber centerline extraction tools. Incorporating synthetic data into training further enhances the network's generalizability. Our code is available at https://github.com/uw-loci/collagen-fiber-metrics.


Subject(s)
Collagen , Neural Networks, Computer , Humans , Fibrillar Collagens , Microscopy , Liver
9.
J Microsc ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37727897

ABSTRACT

The 'Bridging Imaging Users to Imaging Analysis' survey was conducted in 2022 by the Center for Open Bioimage Analysis (COBA), BioImaging North America (BINA) and the Royal Microscopical Society Data Analysis in Imaging Section (RMS DAIM) to understand the needs of the imaging community. Through multichoice and open-ended questions, the survey inquired about demographics, image analysis experiences, future needs and suggestions on the role of tool developers and users. Participants of the survey were from diverse roles and domains of the life and physical sciences. To our knowledge, this is the first attempt to survey cross-community to bridge knowledge gaps between physical and life sciences imaging. Survey results indicate that respondents' overarching needs are documentation, detailed tutorials on the usage of image analysis tools, user-friendly intuitive software, and better solutions for segmentation, ideally in a format tailored to their specific use cases. The tool creators suggested the users familiarise themselves with the fundamentals of image analysis, provide constant feedback and report the issues faced during image analysis while the users would like more documentation and an emphasis on tool friendliness. Regardless of the computational experience, there is a strong preference for 'written tutorials' to acquire knowledge on image analysis. We also observed that the interest in having 'office hours' to get an expert opinion on their image analysis methods has increased over the years. The results also showed less-than-expected usage of online discussion forums in the imaging community for solving image analysis problems. Surprisingly, we also observed a decreased interest among the survey respondents in deep/machine learning despite the increasing adoption of artificial intelligence in biology. In addition, the community suggests the need for a common repository for the available image analysis tools and their applications. The opinions and suggestions of the community, released here in full, will help the image analysis tool creation and education communities to design and deliver the resources accordingly.

10.
J Microsc ; 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37690102

ABSTRACT

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerised tools, improved documentation and added citation/reference tools to facilitate the use and contribution of the community.

11.
Front Cardiovasc Med ; 10: 1215449, 2023.
Article in English | MEDLINE | ID: mdl-37560112

ABSTRACT

Objective: In humans, arterial grayscale ultrasound texture features independently predict adverse cardiovascular disease (CVD) events and change with medical interventions. We performed this study to examine how grayscale ultrasound texture features and elastin fibers change in plaque-free segments of the arterial wall in a murine model prone to atherosclerosis. Methods: A total of 10 Apoetm1Unc/J mice (n = 5 male, n = 5 female) were imaged at 6, 16, and 24 weeks of age. Two mice were euthanized at 6 and 16 weeks and the remaining mice at 24 weeks. Texture features were extracted from the ultrasound images of the distal 1.0 mm of the common carotid artery wall, and elastin measures were extracted from histology images. Two-way analysis of variance was used to evaluate associations between week, sex, and grayscale texture features. Texture feature and elastin number comparisons between weeks were conducted using the sex-by-week two-way interaction contrasts. Sex-specific correlations between the number of elastin fibers and grayscale texture features were analyzed by conducting non-parametric Spearman's rank correlation analyses. Results: Arterial wall homogeneity changed significantly in male mice from 6 to 24 weeks, with a mean (SD) of 0.14 (0.03) units at 6 weeks and 0.18 (0.03) units at 24 weeks (p = 0.026). Spatial gray level dependence matrices-homogeneity (SGLD-HOM) also correlated with carotid artery plaque score (rs = 0.707, p = 0.033). Elastin fibers in the region of interest decreased from 6 to 24 weeks for both male and female mice, although only significantly in male mice. The mean (SD) number of elastin fibers for male mice was 5.32 (1.50) at 6 weeks and 3.59 (0.38) at 24 weeks (p = 0.023). For female mice, the mean (SD) number of elastin fibers was 3.98 (0.38) at 6 weeks and 3.46 (0.19) at 24 weeks (p = 0.051). Conclusion: Grayscale ultrasound texture features that are associated with increased risk for CVD events in humans were used in a murine model, and the grayscale texture feature SGLD-HOM was shown to change in male mice from 6 weeks to 24 weeks. Structural alterations of the arterial wall (change in elastin fiber number) were observed during this time and may differ by sex.

12.
Front Bioinform ; 3: 1233748, 2023.
Article in English | MEDLINE | ID: mdl-37560357

ABSTRACT

As biological imaging continues to rapidly advance, it results in increasingly complex image data, necessitating a reevaluation of conventional bioimage analysis methods and their accessibility. This perspective underscores our belief that a transition from desktop-based tools to web-based bioimage analysis could unlock immense opportunities for improved accessibility, enhanced collaboration, and streamlined workflows. We outline the potential benefits, such as reduced local computational demands and solutions to common challenges, including software installation issues and limited reproducibility. Furthermore, we explore the present state of web-based tools, hurdles in implementation, and the significance of collective involvement from the scientific community in driving this transition. In acknowledging the potential roadblocks and complexity of data management, we suggest a combined approach of selective prototyping and large-scale workflow application for optimal usage. Embracing web-based bioimage analysis could pave the way for the life sciences community to accelerate biological research, offering a robust platform for a more collaborative, efficient, and democratized science.

14.
ArXiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645041

ABSTRACT

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerized tools, improved documentation, and added citation/reference tools to facilitate the use and contribution of the community.

15.
Ultrasound Med Biol ; 49(9): 2103-2112, 2023 09.
Article in English | MEDLINE | ID: mdl-37400303

ABSTRACT

OBJECTIVES: Non-invasive methods for monitoring arterial health and identifying early injury to optimize treatment for patients are desirable. The objective of this study was to demonstrate the use of an adaptive Bayesian regularized Lagrangian carotid strain imaging (ABR-LCSI) algorithm for monitoring of atherogenesis in a murine model and examine associations between the ultrasound strain measures and histology. METHODS: Ultrasound radiofrequency (RF) data were acquired from both the right and left common carotid artery (CCA) of 10 (5 male and 5 female) ApoE tm1Unc/J mice at 6, 16 and 24 wk. Lagrangian accumulated axial, lateral and shear strain images and three strain indices-maximum accumulated strain index (MASI), peak mean strain of full region of interest (ROI) index (PMSRI) and strain at peak axial displacement index (SPADI)-were estimated using the ABR-LCSI algorithm. Mice were euthanized (n = 2 at 6 and 16 wk, n = 6 at 24 wk) for histology examination. RESULTS: Sex-specific differences in strain indices of mice at 6, 16 and 24 wk were observed. For male mice, axial PMSRI and SPADI changed significantly from 6 to 24 wk (mean axial PMSRI at 6 wk = 14.10 ± 5.33% and that at 24 wk = -3.03 ± 5.61%, p < 0.001). For female mice, lateral MASI increased significantly from 6 to 24 wk (mean lateral MASI at 6 wk = 10.26 ± 3.13% and that at 24 wk = 16.42 ± 7.15%, p = 0.048). Both cohorts exhibited strong associations with ex vivo histological findings (male mice: correlation between number of elastin fibers and axial PMSRI: rs = 0.83, p = 0.01; female mice: correlation between shear MASI and plaque score: rs = 0.77, p = 0.009). CONCLUSION: The results indicate that ABR-LCSI can be used to measure arterial wall strain in a murine model and that changes in strain are associated with changes in arterial wall structure and plaque formation.


Subject(s)
Carotid Stenosis , Elasticity Imaging Techniques , Male , Female , Animals , Mice , Bayes Theorem , Disease Models, Animal , Elasticity Imaging Techniques/methods , Carotid Arteries/diagnostic imaging , Ultrasonography , Carotid Stenosis/complications
16.
Nat Methods ; 20(7): 962-964, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37434001
17.
Nat Methods ; 20(7): 976-978, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37434006
18.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333353

ABSTRACT

The "Bridging Imaging Users to Imaging Analysis" survey was conducted in 2022 by the Center for Open Bioimage Analysis (COBA), Bioimaging North America (BINA), and the Royal Microscopical Society Data Analysis in Imaging Section (RMS DAIM) to understand the needs of the imaging community. Through multi-choice and open-ended questions, the survey inquired about demographics, image analysis experiences, future needs, and suggestions on the role of tool developers and users. Participants of the survey were from diverse roles and domains of the life and physical sciences. To our knowledge, this is the first attempt to survey cross-community to bridge knowledge gaps between physical and life sciences imaging. Survey results indicate that respondents' overarching needs are documentation, detailed tutorials on the usage of image analysis tools, user-friendly intuitive software, and better solutions for segmentation, ideally in a format tailored to their specific use cases. The tool creators suggested the users familiarize themselves with the fundamentals of image analysis, provide constant feedback, and report the issues faced during image analysis while the users would like more documentation and an emphasis on tool friendliness. Regardless of the computational experience, there is a strong preference for 'written tutorials' to acquire knowledge on image analysis. We also observed that the interest in having 'office hours' to get an expert opinion on their image analysis methods has increased over the years. In addition, the community suggests the need for a common repository for the available image analysis tools and their applications. The opinions and suggestions of the community, released here in full, will help the image analysis tool creation and education communities to design and deliver the resources accordingly.

19.
PLoS Biol ; 21(6): e3002167, 2023 06.
Article in English | MEDLINE | ID: mdl-37368874

ABSTRACT

Technological advancements in biology and microscopy have empowered a transition from bioimaging as an observational method to a quantitative one. However, as biologists are adopting quantitative bioimaging and these experiments become more complex, researchers need additional expertise to carry out this work in a rigorous and reproducible manner. This Essay provides a navigational guide for experimental biologists to aid understanding of quantitative bioimaging from sample preparation through to image acquisition, image analysis, and data interpretation. We discuss the interconnectedness of these steps, and for each, we provide general recommendations, key questions to consider, and links to high-quality open-access resources for further learning. This synthesis of information will empower biologists to plan and execute rigorous quantitative bioimaging experiments efficiently.


Subject(s)
Image Processing, Computer-Assisted , Microscopy
20.
J Biomed Opt ; 28(6): 066502, 2023 06.
Article in English | MEDLINE | ID: mdl-37351197

ABSTRACT

Significance: Fluorescence lifetime imaging microscopy (FLIM) of the metabolic co-enzyme nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] is a popular method to monitor single-cell metabolism within unperturbed, living 3D systems. However, FLIM of NAD(P)H has not been performed in a light-sheet geometry, which is advantageous for rapid imaging of cells within live 3D samples. Aim: We aim to design, validate, and demonstrate a proof-of-concept light-sheet system for NAD(P)H FLIM. Approach: A single-photon avalanche diode camera was integrated into a light-sheet microscope to achieve optical sectioning and limit out-of-focus contributions for NAD(P)H FLIM of single cells. Results: An NAD(P)H light-sheet FLIM system was built and validated with fluorescence lifetime standards and with time-course imaging of metabolic perturbations in pancreas cancer cells with 10 s integration times. NAD(P)H light-sheet FLIM in vivo was demonstrated with live neutrophil imaging in a larval zebrafish tail wound also with 10 s integration times. Finally, the theoretical and practical imaging speeds for NAD(P)H FLIM were compared across laser scanning and light-sheet geometries, indicating a 30× to 6× acquisition speed advantage for the light sheet compared to the laser scanning geometry. Conclusions: FLIM of NAD(P)H is feasible in a light-sheet geometry and is attractive for 3D live cell imaging applications, such as monitoring immune cell metabolism and migration within an organism.


Subject(s)
NAD , Pancreatic Neoplasms , Animals , NAD/metabolism , Zebrafish , Microscopy, Fluorescence/methods , Photons , Optical Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...